0 What is Glycolysis?Definition,description,meaning

Glycolysis (from glycose, an older term[1] for glucose + -lysis degradation) is the metabolic pathway that converts glucose C6H12O6, into pyruvate, CH3COCOO− + H+. The free energy released in this process is used to form the high-energy compounds ATP (adenosine triphosphate) and NADH (reduced nicotinamide adenine dinucleotide). Oxidation of glucose is known as glycolysis.Glucose is oxidized to either lactate or pyruvate. Under aerobic conditions, the dominant product in most tissues is pyruvate and the pathway is known as aerobic glycolysis. When oxygen is depleted, as for instance during prolonged vigorous exercise, the dominant glycolytic product in many tissues is lactate and the process is known as anaerobic glycolysis.

Glycolysis define as:
1. An ATP-generating metabolic process that occurs in nearly all living cells in which glucose is converted in a series of steps to pyruvic acid.
2. The metabolic breakdown of glucose and other sugars that releases energy in the form of ATP.
(1) The initial metabolic pathway of cellular respiration in which a series of reactions happening in the cytosol results in the conversion of a monosaccharide, often glucose, into pyruvic acid, and the concomitant production of a relatively small amount of high-energy molecules, such as ATP.
(2) The cellular degradation of the simple sugar, glucose, to yield ATP as an energy source.

In Columbia Encyclopedia:
Glycolysis (glīkŏl'ĭsĭs), term given to the metabolic pathway utilized by most microorganisms (yeast and bacteria) and by all "higher" animals (including humans) for the degradation of glucose. Glycolysis means, literally, the dissolution of sugar. The process is a series of consecutive chemical conversions that require the participation of eleven different enzymes, most of which have been crystallized and thoroughly studied. Glycolysis begins with a single molecule of glucose and concludes with the production of two molecules of pyruvic acid. The pathway is seen to be degradative, or catabolic, in that the six-carbon glucose is reduced to two molecules of the three-carbon pyruvic acid. Much of the energy that is liberated upon degradation of glucose is conserved by the simultaneous formation of the so-called high-energy molecule adenosine triphosphate (ATP). Two reactions of the glycolytic sequence proceed with the concomitant production of ATP, thus ATP synthesis is said to be coupled to glycolysis. Hundreds of cellular reactions, particularly those involved in the synthesis of cellular components and those that allow the cell to perform mechanical work, require the participation of ATP as a source of chemical energy. While glycolysis is the primary fuel process for some organisms that do not require oxygen, such as yeast, aerobic organisms can only gain a small portion of their needed energy from this process. Glycolysis occurs in two major stages, the first of which is the conversion of the various sugars to a common intermediate, glucose-6-phosphate. The second major phase is the conversion of glucose-6-phosphate to pyruvate. The products of glycolysis are further metabolized to complete the breakdown of glucose. Their ultimate fate varies depending upon the organism. In certain microorganisms lactic acid is the final product produced from pyruvic acid, and the process is referred to as homolactic fermentation. In certain bacteria and in brewer's yeast, lactic acid is not produced in large quantities. Instead pyruvic acid, which is also the precursor of lactic acid, is converted to ethanol and carbon dioxide by an enzyme-catalyzed two-step process, termed alcoholic fermentation. In the tissues of many organisms, including mammals, glycolysis is a prelude to the complex metabolic machinery that ultimately converts pyruvic acid to carbon dioxide and water with the concomitant production of much ATP and the consumption of oxygen. See Krebs cycle; respiration.